
The ABCs of Open MPI
Decoding the Alphabet Soup of the Modern HPC Ecosystem

(Part 1)

Ralph H. Castain, Jeffrey M. Squyres

Presented in conjunction
with the EasyBuild community

Webex Logistics
● This session is being recorded
● Ask questions in the Q&A panel

Overview
● Background
● PMIx: What is it?
● Building Open MPI
● A breakdown of Open MPI:

○ The run-time stuff
○ The MPI stuff

● Configuration / debugging tips
● The upcoming Open MPI v4.1.x series
● The upcoming Open MPI v5.0.x series

We’ll get as far as we get today

Next session: Wednesday, July 8

Background

Open MPI Overall Architecture Terminology
● Modular Component Architecture (MCA)

○ Semantic architecture of the Open MPI software package
○ Hierarchy: Project → Framework → Component

Open MPI Overall Architecture Terminology

Open MPI

Frame
work

ProjectProjectProject

Frame
work

Frame
work

Frame
work

Frame
work

Frame
work

Frame
work

Frame
work

Frame
work

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

C
om

po
ne

nt

Open MPI Framework + Component Examples

Open MPI

PML

OPAL
(open portable access layer)SHMEMMPI

BTL MTL atomic scoll sshmem threads shmem timer

ob
1

cm v tc
p

sm us
ni

c

of
i

ps
m

2

po
rta

ls
4

ba
si

c

uc
x

...

ba
si

c

m
pi ...

m
m

ap

sy
sv

uc
x

pt
hr

ea
ds

qt
hr

ea
ds

ar
go

bo
ts

po
si

x

m
m

ap

sy
sv

lin
ux

da
rw

in

so
la

ris

Pr
oj

ec
t

Fr
am

ew
or

k
Co

m
po

ne
nt

(“p
lu

gi
n”

)

(NOTE: not a comprehensive
list of all projects, frameworks,

and components)

Names of Frameworks and Components
● The Open MPI community has proven to be terrible at naming things

● There are several frameworks and components with Star Wars-inspired
names (i.e., that have nothing to do with their functionality)

○ Most famous: “vader” = shared memory message transport
○ A few non-Star-Wars science fiction names, too (e.g., Star Trek, Highlander)

PMIx: What Is It?

Origin: Changing Landscape

Start Someplace!

What is PMIx?

Three Distinct Entities
● PMIx Standard

○ Defined set of APIs, attribute strings
○ Nothing about implementation

● OpenPMIx Library
○ Full-featured implementation of the Standard
○ Intended to ease adoption

● PMIx Reference RTE (PRRTE)
○ Full-featured “shim” to a non-PMIx RM
○ Provides development environment

v4.0 soon!

v2.0 soon!

The Community

SMS

Messenger not Doer

APP

Tool

What Is Its Role?

“Doer” Exceptions

Where Does It Fit?

Open MPI

PTL

PMIx

GDS

TC
P

ha
sh

ds
12

ds
21

us
oc

k

Building Open MPI

Tl;dr
wget \

 https://download.open-mpi.org/release/open-mpi/vx.y/openmpi-x.y.z.tar.bz2

tar xf openmpi-x.y.z.tar.bz2

cd openmpi-x.y.z

./configure --prefix=$HOME/my-ompi <options> |& tee config.out

Most <options> typically deal with network communications

libraries (e.g., libfabric, UCX)

make -j 8 |& tee make.out

make install |& tee install.out

Building from a Distribution Tarball vs. Git Clone
● Distribution tarballs are bootstrapped
● Building from a Git clone requires more tools

○ GNU Autotools
○ Flex
○ Pandoc (as of May 2020 git master / upcoming v5.0.0)

● See the HACKING file for more details about building from a Git clone

Configure Script Philosophies
● The configure script looks around your system

○ Searches for support for optional dependencies
○ If it finds them, builds support for them
○ If it does not find them, skip them (i.e., it’s not an error)

● If user specifies --with-FOO (e.g., --with-libfabric)
○ The configure script will fail / abort if it cannot find / build support for FOO

● If user specifies --without-FOO
○ The configure script will (effectively) skip looking for FOO

● In short: if a human asks for something that configure can’t do, abort

Specifying Compilers
● Via the usual GNU Autoconf method: shell variables

○ CC (C compiler)
○ CXX (C++ compiler)
○ FC (Fortran compiler)

→ F77 and F90 are no longer used!
→ FC is used to compile all Open MPI Fortran code

● Best practice: specify these values to the right of the configure token
○ ./configure CC=/path/to/clang CXX=/path/to/clang++ FC=/path/to/gfortran …
○ This way, these values end up in config.log

Project Libraries: Static or Shared?
● Open MPI supports building static and/or shared libraries

○ --enable-static / --disable-static
■ Referring to libmpi.a

○ --enable-shared / --disable-shared
■ Referring to libmpi.so

● Default (recomended):
○ --disable-static

○ --enable-shared

libmpi

Components: DSO or Included?
● By default, components are built as

Dynamic Shared Objects (DSOs)
○ Individual files that are opened at run

time (e.g., via dlopen())

PML

MPI

BTL MTL

ob
1

cm v tc
p

sm us
ni

c

of
i

ps
m

2

po
rta

ls
4

Individual DSOs

libmpi

Components: DSO or Included?
● By default, components are built as

Dynamic Shared Objects (DSOs)
○ Individual files that are opened at run

time (e.g., via dlopen())

● But the components can also be
included in their respective project
library

○ ./configure --disable-dlopen …
PML

MPI

BTL MTL

ob
1

cm v tc
p

sm us
ni

c

of
i

ps
m

2

po
rta

ls
4

Dependencies: libevent and hwloc
● Open MPI requires these two packages

○ Most modern Linux distros come with these packages
○ But installing the header files is not common

● Open MPI therefore (still) embeds full copies of these packages
○ If configure finds system-installed versions, it will use them (“external”)
○ If not, it will use the embedded copies (“internal”)

● Can use CLI options to force the “internal” or “external” versions:
○ ./configure --with-hwloc=/path/to/external/hwloc/install/tree …
○ ./configure --with-libevent=internal ...

Communication Libraries
The most common two libraries these days are Libfabric and UCX:

● Libfabric (“OpenFabrics Interfaces”)
○ --with-libfabric[=LIBFABRIC_INSTALL_DIR]

● UCX (Unified Communication X)
○ --with-ucx[=UCX_INSTALL_DIR]

But other communication libraries are also availble, such as:

● PSM2 (OmniPath) and Portals4 are also supported
○ --with-psm2[=PSM2_INSTALL_DIR]

○ --with-portals4[=PORTALS4_INSTALL_DIR]

Libfabric (“OFI”) and UCX
● Libfabric was originally created by

network vendors who wanted an HPC
network API that wasn’t tied to the
abstractions of InfiniBand

○ Cisco (usNIC)
○ Cray (uGNI)
○ Intel (PSM, PSM2)

● It has since grown to support many
additional network types

○ AWS EFA (Elastic Fabric Adapter)
○ BlueGene Q
○ IB Verbs (IB, RoCE, iWARP)
○ NetDirect
○ POSIX TCP and UDP sockets
○ Shared memory

● UCX became the next generation,
higher-abstraction InifiniBand support,
supporting:

○ InfiniBand
○ RoCE

● It also grew to support additional
network types:

○ Cray uGNI
○ POSIX TCP sockets
○ Shared memory

UCX

AWS EFA
Cisco usNIC

Cray uGNI (vendor)
IB verbs (3rd party)
IBM Blue Gene Q
Intel PSM, PSM2

NetDirect
UDP sockets

Shared memory
TCP sockets

IB verbs (vendor)
Cray uGNI (3rd party)

Libfabric

NOTE: Open MPI does not use Libfabric or UCX
for (pure) shared memory or TCP

Accelerators
Open MPI has CUDA support

● Nvidia (Mellanox) recommends building UCX with GDRcopy support
○ GDR = GPUDirect RDMA (there are multiple flavors of GPUDirect; this is the RDMA flavor)
○ Consult UCX documentation for GDRcopy build information

● Then build Open MPI with CUDA and UCX support
○ ./configure --with-cuda[=/path/to/cuda] --with-ucx[=/path/to/ucx]

● PSM2 also supports CUDA

When built with CUDA support, Open MPI can send messages from / receive
messages to GPU device memory without copying through main RAM

Open MPI Installation Details
● Use the ompi_info command to

see information about your
installation

● Useful CLI options:
○ --parsable: machine-friendly

format
○ --all: see all available MCA

run-time parameters

$ ompi_info

 Package: Open MPI jsquyres@laptop Distribution

 Open MPI: 5.0.0a1

 Open MPI repo revision: v2.x-dev-7856-ge1e8b2a373

 Open MPI release date: Unreleased developer copy

 MPI API: 3.1.0

 Ident string: 5.0.0a1

 Prefix: /Users/jsquyres/bogus

 Configured architecture: x86_64-apple-darwin19.5.0

 Configured by: jsquyres

 Configured on: Sat Jun 20 13:46:35 EDT 2020

 Configure host: laptop

 Configure command line: '--prefix=/Users/jsquyres/bogus'

 Built by: jsquyres

 Built on: Sat Jun 20 14:00:44 EDT 2020

 Built host: laptop

 C bindings: yes

 Fort mpif.h: no

 Fort use mpi: no

 Fort use mpi size: deprecated-ompi-info-value

 Fort use mpi_f08: no

…

Questions?
That’s it for part 1!

Join us for part 2 in two weeks:
July 8, 2020

8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST

Thank you!

Join us for part 2 in two weeks:
July 8, 2020

8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST

