The ABCs of Open MPI

Decoding the Alphabet Soup of the Modern HPC Ecosystem

(Part 1)
I /‘\‘l I
54

Ralph H. Castain, Jeffrey M. Squyres

Presented in conjunction
with the EasyBuild community

Webex Logistics

e This session is being recorded
e Ask questions in the Q&A panel

Overview

Background

PMIx: What is it?

Building Open MPI

A breakdown of Open MPI:

o The run-time stuff
o The MPI stuff

Configuration / debugging tips
The upcoming Open MPI v4.1.x series
The upcoming Open MPI v5.0.x series

We’'ll get as far as we get today

Next session: Wednesday, July 8

Background

Open MPI Overall Architecture Terminology

e Modular Component Architecture (MCA)

o Semantic architecture of the Open MPI software package
o Hierarchy: Project - Framework — Component

Open MPI Overall Architecture Terminology

Component

Project

Framework

(“plugin”)

Open MPI Framework + Component Examples

(NOTE: not a comprehensive

Open MPI list of all projects, frameworks,
and components)

Names of Frameworks and Components

e The Open MPI community has proven to be terrible at naming things

e There are several frameworks and components with Star Wars-inspired

names (i.e., that have nothing to do with their functionality)
o Most famous: “vader” = shared memory message transport
o Afew non-Star-Wars science fiction names, too (e.g., Star Trek, Highlander)

PMIx: What Is It?

Origin: Changing Landscape

Launch time limiting scale Programming model &
s runtime proliferation

Legion ¢
Q A~

\

A7MPl

OpenMP

Hybrid applications Model-spific tools

Container technologies

Start Someplace!

~

Resolve launch scaling

= Pre-load information
known to RM/scheduler

= Pre-assign
communication endpoints

= Eliminate data exchange
during init

= Orchestrate launch
procedure

What is PMIx?

2015 2016 2020
RM /W\ " RM N
All but
e SLURM UGE
ALPS I
-~
=71 R
Pel-1= Pil-2 [PV 1028 e PMIx V1.2 e
MPICH yearsgo by... [tz s

wireup support

dynamic spawn Exascale systems OMPI OMPI
: horizon MPICH
keyval publish/lookup on Spect
Launch times long gl Spect
N di OSHMEM becHsn
ew paraaigms OSHMEM
PGAS Exascale launch Exascale launch SOS

others in < 30s in < 10s PGAS

Workflow TV/DDT
orchestration

Three Distinct Entities

e PMiIx Standard D
o Defined set of APIs, attribute strings

o Nothing about implementation
e OpenPMIx Library

o Full-featured implementation of the Standard
o Intended to ease adoption)

e PMIx Reference RTE (PRRTE) v2.0 soon!

o Full-featured “shim” to a non-PMIx RM
o Provides development environment

> v4.0 soon!

The Community
(intel)

R

RIST

A

Mellanox

TECHNOLOGIES

ICLUr

(o2}
FUJITSU ~ %QAKRIDCE

https://pmix.org
https://github.com/pmix

<||I

» Los Alamos

NATIONAL LABORATORY

EST.

1943

“‘Qﬂ‘” E Sched M D

Messenger not Doer

What Is Its Role?

Orchestration
Requests

D) | |
CE—

Responses

-

System
Management Stack

~

“Doer” Exceptions

Interactions with non-PMIx systems

= Fabric manager, credential subsystems, storage
systems

Aggregate local collective operations
* Fence, connect/disconnect

Environment “support”
= Inventory collection, process monitoring, logging

Where Does It Fit?

Building Open MPI

Tl;dr

wget \
https://download.open-mpi.org/release/open-mpi/vx.y/openmpi-x.y.z.tar.bz2

tar xf openmpi-x.y.z.tar.bz2

cd openmpi-x.y.z

./configure --prefix=$HOME/my-ompi <options> |& tee config.out
Most <options> typically deal with network communications
libraries (e.g., libfabric, UCX)

make -j 8 |& tee make.out
make install |& tee install.out

Building from a Distribution Tarball vs. Git Clone

e Distribution tarballs are bootstrapped

e Building from a Git clone requires more tools
o GNU Autotools
o Flex
o Pandoc (as of May 2020 git master / upcoming v5.0.0)

e See the HACKING file for more details about building from a Git clone

Configure Script Philosophies

e The configure script looks around your system

o Searches for support for optional dependencies
o Ifitfinds them, builds support for them
o Ifit does not find them, skip them (i.e., it's not an error)

e If user specifies --with-FO0O (e.g., --with-1ibfabric)
o The configure script will fail / abort if it cannot find / build support for FOO

e If user specifies --without-F0O
o The configure script will (effectively) skip looking for FOO

e In short: if a human asks for something that configure can’t do, abort

Specifying Compilers

e Viathe usual GNU Autoconf method: shell variables
o CC(Ccompiler)
o CXX (C++ compiler)
o FC(Fortran compiler)
— F77 and F90 are no longer used!
— FC is used to compile all Open MPI Fortran code

e Best practice: specify these values to the right of the configure token

o ./configure CC=/path/to/clang CXX=/path/to/clang++ FC=/path/to/gfortran ...

o This way, these values end up in config.log

Project Libraries: Static or Shared?

e Open MPI supports building static and/or shared libraries

0 --enable-static/ --disable-static
m Referring to libmpi.a
o --enable-shared/ --disable-shared

m Referring to 1ibmpi.so

e Default (recomended):
o --disable-static
o --enable-shared

Components: DSO or Included?

e By default, components are built as

Dynamic Shared Objects (DSOs)

o Individual files that are opened at run
time (e.g., via dlopen())

Individual DSOs - III III III

/ libmpi \

| 1]}

Components: DSO or Included?

e By default, components are built as
Dynamic Shared Objects (DSOs)

o Individual files that are opened at run
time (e.g., via dlopen())

e Butthe components can also be
included in their respective project
library

o ./configure --disable-dlopen ...

Dependencies: libevent and hwloc

e Open MPI requires these two packages
o Most modern Linux distros come with these packages
o Butinstalling the header files is not common
e Open MPI therefore (still) embeds full copies of these packages
o If configure finds system-installed versions, it will use them (“external”)
o If not, it will use the embedded copies (“internal”)

e (Can use CLI options to force the “internal” or “external” versions:
o ./configure --with-hwloc=/path/to/external/hwloc/install/tree ...
o ./configure --with-libevent=internal ...

Communication Libraries

The most common two libraries these days are Libfabric and UCX:

e Libfabric (“OpenFabrics Interfaces”)
o --with-libfabric[=LIBFABRIC_INSTALL_DIR]

e UCX (Unified Communication X)
o --with-ucx[=UCX_INSTALL_DIR]

But other communication libraries are also availble, such as:

e PSM2 (OmniPath) and Portals4 are also supported
o --with-psm2[=PSM2_INSTALL_DIR]
o --with-portals4[=PORTALS4 INSTALL DIR]

Libfabric (“OFI”) and UCX

e Libfabric was originally created by e UCX became the next generation,
network vendors who wanted an HPC higher-abstraction InifiniBand support,
network APl that wasn't tied to the supporting:
abstractions of InfiniBand o InfiniBand

o Cisco (usNIC) o RoCE
o Cray (UGNI) e |talso grew to support additional
o Intel (PSM, PSM2) network types:
e It has since grown to support many o Cray uGNI
additional network types o POSIXTCP sockets
o AWS EFA (Elastic Fabric Adapter) o Shared memory
o BlueGene Q
o IBVerbs (IB, RoCE, iWARP)
o NetDirect
o POSIXTCP and UDP sockets
o Shared memory

AWS EFA
Cisco usNIC
Cray uGNI (vendor)
IB verbs (3rd party)
IBM Blue Gene Q
Intel PSM, PSM2
NetDirect
UDP sockets

IB verbs (vendor)
Cray uGNI (3rd party)

Shared memory
TCP sockets

NOTE: Open MPI does not use Libfabric or UCX
for (pure) shared memory or TCP

Accelerators

Open MPI has CUDA support

e Nvidia (Mellanox) recommends building UCX with GDRcopy support

o GDR = GPUDirect RDMA (there are multiple flavors of GPUDirect; this is the RDMA flavor)
o Consult UCX documentation for GDRcopy build information

e Then build Open MPI with CUDA and UCX support
o ./configure --with-cuda[=/path/to/cuda] --with-ucx[=/path/to/ucx]
e PSM2 also supports CUDA

When built with CUDA support, Open MPI can send messages from / receive
messages to GPU device memory without copying through main RAM

Open MPI Installation Details

e Usethe ompi_info command to $ ompi_info
. . Package:
see information about your Open MPI
installation Open MPI repo revision:

e Useful CLI options:

o --all:see all available MCA
run-time parameters

Open MPI release date:
MPI API: 3.1.0

o --parsable: machine-friendly Ident string:
format Prefix:
Configured architecture:
Configured by:
Configured on:

Configure host:
Configure command line:
Built by:

Built on:

Built host:

C bindings:

Fort mpif.h:

Fort use mpi:

Fort use mpi size:

Fort use mpi_fo8:

Open MPI jsquyres@laptop Distribution
: 5.0.0a1

v2.x-dev-7856-gele8b2a373
Unreleased developer copy

5.0.0al
/Users/jsquyres/bogus
x86_64-apple-darwinl9.5.0
jsquyres

Sat Jun 20 13:46:35 EDT 2020
laptop
'--prefix=/Users/jsquyres/bogus
jsquyres

Sat Jun 20 14:00:44 EDT 2020
laptop

yes

no

no
deprecated-ompi-info-value
no

Questions?

That's it for part 1!

Join us for part 2 in two weeks:
July 8, 2020
8am US Pacific / 11am US Eastern / 3pm UTC/ 5pm CEST

Thank you!

Join us for part 2 in two weeks:
July 8, 2020
8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST

