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Webex Logistics
● This session is being recorded
● Ask questions in the Q&A panel



Overview
● Background
● PMIx: What is it?
● Building Open MPI
● A breakdown of Open MPI:

○ The run-time stuff
○ The MPI stuff

● Configuration / debugging tips
● The upcoming Open MPI v4.1.x series
● The upcoming Open MPI v5.0.x series

We’ll get as far as we get today

Next session: Wednesday, July 8



Background



Open MPI Overall Architecture Terminology
● Modular Component Architecture (MCA)

○ Semantic architecture of the Open MPI software package
○ Hierarchy: Project → Framework → Component



Open MPI Overall Architecture Terminology
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Open MPI Framework + Component Examples

Open MPI

PML
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(NOTE: not a comprehensive 
list of all projects, frameworks, 

and components)



Names of Frameworks and Components
● The Open MPI community has proven to be terrible at naming things

● There are several frameworks and components with Star Wars-inspired 
names (i.e., that have nothing to do with their functionality)

○ Most famous: “vader” = shared memory message transport
○ A few non-Star-Wars science fiction names, too (e.g., Star Trek, Highlander)



PMIx: What Is It?



Origin: Changing Landscape



Start Someplace!



What is PMIx?



Three Distinct Entities
● PMIx Standard

○ Defined set of APIs, attribute strings
○ Nothing about implementation

● OpenPMIx Library
○ Full-featured implementation of the Standard
○ Intended to ease adoption

● PMIx Reference RTE (PRRTE)
○ Full-featured “shim” to a non-PMIx RM
○ Provides development environment

v4.0 soon!

v2.0 soon!



The Community
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What Is Its Role?



“Doer” Exceptions



Where Does It Fit?
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Building Open MPI



Tl;dr
wget \

  https://download.open-mpi.org/release/open-mpi/vx.y/openmpi-x.y.z.tar.bz2

tar xf openmpi-x.y.z.tar.bz2

cd openmpi-x.y.z

./configure --prefix=$HOME/my-ompi <options> |& tee config.out

# Most <options> typically deal with network communications

# libraries (e.g., libfabric, UCX)

make -j 8    |& tee make.out

make install |& tee install.out



Building from a Distribution Tarball vs. Git Clone
● Distribution tarballs are bootstrapped
● Building from a Git clone requires more tools

○ GNU Autotools
○ Flex
○ Pandoc (as of May 2020 git master / upcoming v5.0.0)

● See the HACKING file for more details about building from a Git clone



Configure Script Philosophies
● The configure script looks around your system

○ Searches for support for optional dependencies
○ If it finds them, builds support for them
○ If it does not find them, skip them (i.e., it’s not an error)

● If user specifies --with-FOO (e.g., --with-libfabric)
○ The configure script will fail / abort if it cannot find / build support for FOO

● If user specifies --without-FOO
○ The configure script will (effectively) skip looking for FOO

● In short: if a human asks for something that configure can’t do, abort



Specifying Compilers
● Via the usual GNU Autoconf method: shell variables

○ CC (C compiler)
○ CXX (C++ compiler)
○ FC (Fortran compiler)

→ F77 and F90 are no longer used!
→ FC is used to compile all Open MPI Fortran code

● Best practice: specify these values to the right of the configure token
○ ./configure CC=/path/to/clang CXX=/path/to/clang++ FC=/path/to/gfortran …
○ This way, these values end up in config.log



Project Libraries: Static or Shared?
● Open MPI supports building static and/or shared libraries

○ --enable-static / --disable-static 
■ Referring to libmpi.a

○ --enable-shared / --disable-shared
■ Referring to libmpi.so

● Default (recomended):
○ --disable-static

○ --enable-shared



libmpi

Components: DSO or Included?
● By default, components are built as 

Dynamic Shared Objects (DSOs)
○ Individual files that are opened at run 

time (e.g., via dlopen())
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libmpi

Components: DSO or Included?
● By default, components are built as 

Dynamic Shared Objects (DSOs)
○ Individual files that are opened at run 

time (e.g., via dlopen())

● But the components can also be 
included in their respective project 
library

○ ./configure --disable-dlopen …
PML
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Dependencies: libevent and hwloc
● Open MPI requires these two packages

○ Most modern Linux distros come with these packages
○ But installing the header files is not common

● Open MPI therefore (still) embeds full copies of these packages
○ If configure finds system-installed versions, it will use them (“external”)
○ If not, it will use the embedded copies (“internal”)

● Can use CLI options to force the “internal” or “external” versions:
○ ./configure --with-hwloc=/path/to/external/hwloc/install/tree …
○ ./configure --with-libevent=internal ...



Communication Libraries
The most common two libraries these days are Libfabric and UCX:

● Libfabric (“OpenFabrics Interfaces”)
○ --with-libfabric[=LIBFABRIC_INSTALL_DIR]

● UCX (Unified Communication X)
○ --with-ucx[=UCX_INSTALL_DIR]

But other communication libraries are also availble, such as:

● PSM2 (OmniPath) and Portals4 are also supported
○ --with-psm2[=PSM2_INSTALL_DIR]

○ --with-portals4[=PORTALS4_INSTALL_DIR]



Libfabric (“OFI”) and UCX
● Libfabric was originally created by 

network vendors who wanted an HPC 
network API that wasn’t tied to the 
abstractions of InfiniBand

○ Cisco (usNIC)
○ Cray (uGNI)
○ Intel (PSM, PSM2)

● It has since grown to support many 
additional network types

○ AWS EFA (Elastic Fabric Adapter)
○ BlueGene Q
○ IB Verbs (IB, RoCE, iWARP)
○ NetDirect
○ POSIX TCP and UDP sockets
○ Shared memory

● UCX became the next generation, 
higher-abstraction InifiniBand support, 
supporting:

○ InfiniBand
○ RoCE

● It also grew to support additional 
network types:

○ Cray uGNI
○ POSIX TCP sockets
○ Shared memory



UCX 

AWS EFA
Cisco usNIC

Cray uGNI (vendor)
IB verbs (3rd party)
IBM Blue Gene Q
Intel PSM, PSM2

NetDirect
UDP sockets

Shared memory
TCP sockets

IB verbs (vendor)
Cray uGNI (3rd party)

Libfabric 

NOTE: Open MPI does not use Libfabric or UCX 
for (pure) shared memory or TCP



Accelerators
Open MPI has CUDA support

● Nvidia (Mellanox) recommends building UCX with GDRcopy support
○ GDR = GPUDirect RDMA (there are multiple flavors of GPUDirect; this is the RDMA flavor)
○ Consult UCX documentation for GDRcopy build information

● Then build Open MPI with CUDA and UCX support
○ ./configure --with-cuda[=/path/to/cuda] --with-ucx[=/path/to/ucx]

● PSM2 also supports CUDA

When built with CUDA support, Open MPI can send messages from / receive 
messages to GPU device memory without copying through main RAM



Open MPI Installation Details
● Use the ompi_info command to 

see information about your 
installation

● Useful CLI options:
○ --parsable: machine-friendly 

format
○ --all: see all available MCA 

run-time parameters

$ ompi_info

                 Package: Open MPI jsquyres@laptop Distribution

                Open MPI: 5.0.0a1

  Open MPI repo revision: v2.x-dev-7856-ge1e8b2a373

   Open MPI release date: Unreleased developer copy

                    MPI API: 3.1.0

            Ident string: 5.0.0a1

                  Prefix: /Users/jsquyres/bogus

 Configured architecture: x86_64-apple-darwin19.5.0

           Configured by: jsquyres

           Configured on: Sat Jun 20 13:46:35 EDT 2020

          Configure host: laptop

  Configure command line: '--prefix=/Users/jsquyres/bogus'

                Built by: jsquyres

                Built on: Sat Jun 20 14:00:44 EDT 2020

              Built host: laptop

              C bindings: yes

             Fort mpif.h: no

            Fort use mpi: no

       Fort use mpi size: deprecated-ompi-info-value

        Fort use mpi_f08: no

… 



Questions?
That’s it for part 1!

Join us for part 2 in two weeks:
July 8, 2020

8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST



Thank you!

Join us for part 2 in two weeks:
July 8, 2020

8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST


