
Introduction to the CUDA Toolkit
for Building Applications

Adam DeConinck
HPC Systems Engineer, NVIDIA

Copyright © NVIDIA Corporation

!   What this talk will cover:
The CUDA 5 Toolkit as a toolchain for HPC applications,
focused on the needs of sysadmins and application packagers
!   Review GPU Computing concepts
!   CUDA C/C++ with nvcc compiler
!   Example application build processes
! OpenACC compilers
!   Common libraries

!   What this talk won’t cover:
!   Developing software for GPUs
!   General sysadmin of a GPU cluster
!   Earlier versions of CUDA (mostly)
!   Anything to do with Windows

Copyright © NVIDIA Corporation

GPU CPU

CPU vs GPU
Latency Processor + Throughput processor

Copyright © NVIDIA Corporation

Low Latency or High Throughput?

CPU
!   Optimized for low-latency

access to cached data sets
!   Control logic for out-of-order

and speculative execution

GPU
!   Optimized for data-parallel,

throughput computation
!   Architecture tolerant of

memory latency
!   More transistors dedicated to

computation

Copyright © NVIDIA Corporation

Processing Flow

1.  Copy input data from CPU memory to GPU
memory

PCIe Bus

Copyright © NVIDIA Corporation

Processing Flow

1.  Copy input data from CPU memory to GPU
memory

2.  Load GPU program and execute,
caching data on chip for performance

PCIe Bus

Copyright © NVIDIA Corporation

Processing Flow

1.  Copy input data from CPU memory to GPU
memory

2.  Load GPU program and execute,
caching data on chip for performance

3.  Copy results from GPU memory to CPU
memory

PCIe Bus

Copyright © NVIDIA Corporation

Anatomy of a CUDA Application
!   Serial code executes in a Host (CPU) thread
!   Parallel code executes in many Device (GPU) threads

across multiple processing elements

CUDA Application

Serial code

Serial code

Parallel code

Parallel code

Device = GPU

…

Host = CPU

Device = GPU

...

Host = CPU

Copyright © NVIDIA Corporation

void saxpy_serial(int n,

 float a,

 float *x,

 float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

__global__

void saxpy_parallel(int n,

 float a,

 float *x,

 float *y)

{

 int i = blockIdx.x*blockDim.x +

 threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

CUDA C
Standard C Code Parallel C Code

Copyright © NVIDIA Corporation

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Most common: CUDA C

Also CUDA Fortran,
PyCUDA, Matlab, …

OpenACC
Directives

Compiler directives
(Like OpenMP)

Copyright © NVIDIA Corporation

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”
Acceleration

Programming
Languages

Most common: CUDA C

Also CUDA Fortran,
PyCUDA, Matlab, …

OpenACC
Directives

Like OpenMP

!   Most of the talk will focus on
CUDA Toolkit (CUDA C)

!   Will hit OpenACC and common
libraries at the end of the talk

Copyright © NVIDIA Corporation

The CUDA Toolkit

Copyright © NVIDIA Corporation

CUDA Toolkit

!   Free developer tools for building applications with CUDA C/C++
and the CUDA Runtime API

!   Includes (on Linux):
! nvcc compiler
!   Debugging and profiling tools
! Nsight Eclipse Edition IDE
!   NVIDIA Visual Profiler
!   A collection of libraries (CUBLAS, CUFFT, Thrust, etc)

!   Currently the most common tool for building NVIDIA GPU
applications

Copyright © NVIDIA Corporation

CUDA Toolkit environment module

#%Module	
module-‐whatis	 “CUDA	 Toolkit	 5.0”	
set 	 	 	 root 	 	 	 	 /opt/cuda-‐5.0	
set 	 	 	 CUDA_HOME 	 	 	 $root	
prepend-‐path 	 PATH 	 	 	 	 $root/bin	
prepend-‐path 	 PATH 	 	 	 	 $root/open64/bin	
prepend-‐path 	 CPATH	 	 	 	 $root/include	
prepend-‐path 	 LD_LIBRARY_PATH 	 	 $root/lib64	

	 	

Copyright © NVIDIA Corporation

Building a CUDA app

!   CUDA doesn’t impose any specific build process, so most common build
processes are represented in apps
!   configure/make/make install
! cmake/make/make install
! etc

!   Similar to MPI in that you just have to point to nvcc correctly (like pointing to
the right mpicc)
!   But you always have to use the “special” compiler; not just a wrapper like

mpicc to command-line options
!   If CUDA support is optional, there’s often a configure option or macro to

enable/disable it
!   --enable-cuda … --with-cuda … --enable-nvidia … -DCUDA_ENABLE=1 …
!   No convention on what this option should be

Copyright © NVIDIA Corporation

Where’s CUDA?

Common to install CUDA somewhere other than /usr/local/cuda, so
where is it?

!   Common: specify location of the CUDA toolkit using an

environment variable
!   No convention on the name of this variable, though
!   CUDA_HOME=… is common
!   Also CUDA=, CUDA_PATH=, NVIDIA_CUDA=, …

!   OR a command line argument: --with-cuda-lib=/opt/cuda ….
!   OR just hard-code /usr/local/cuda in the Makefile

!   I see this far too frequently.

Copyright © NVIDIA Corporation

NVCC Compiler

!  Compiler for CUDA C/C++
!  Uses the CUDA Runtime API

!   Resulting binaries link to CUDA Runtime library, libcudart.so

!  Takes a mix of host code and device code as input
!  Uses g++ for host code

!  Builds code for CPU and GPU architectures
!  Generates a binary which combines both types of code

Copyright © NVIDIA Corporation

Common NVCC Options

Environment variable Command-line flag Equivalent for gcc Definition

INCLUDES --include-path
-I

CPATH
-I

Define additional include paths

LIBRARIES --library-path
-L

LD_LIBRARY_PATH
-L

Define additional library paths

--optimize
-O

-O Optimization level for host code

-use_fast_math Apply all device-level math
optimizations

PTXAS_FLAGS -Xptxas=-v Print GPU resources (shared
memory, registers) used per kernel

Copyright © NVIDIA Corporation

CUDA support in MPI implementations

!   Most major MPIs now support addressing CUDA device memory directly
!   Do MPI_Send/MPI_Receive with pointers to device memory; skip cudaMemcpy step

in application code

! GPUDirect: do direct device-to-device transfers (skipping host memory)

! OpenMPI, mvapich2, Platform MPI, … See NVIDIA DevZone for a full list
!   Support typically has to be included at compile time

Copyright © NVIDIA Corporation

Example Builds

Copyright © NVIDIA Corporation

Example: matrixMul

!   Part of the CUDA 5 Samples (distributed with CUDA Toolkit)
!   Single CUDA source file containing host and device code
!   Single compiler command using nvcc

$	 nvcc	 -‐m64	 -‐I../../common/inc	 matrixMul.cu	 	
$./a.out	
[Matrix	 Multiply	 Using	 CUDA]	 -‐	 Starting...	
GPU	 Device	 0:	 "Tesla	 M2070"	 with	 compute	 capability	 2.0	
MatrixA(320,320),	 MatrixB(640,320)	
Computing	 result	 using	 CUDA	 Kernel...done	
...	

Copyright © NVIDIA Corporation

Example: simpleMPI

!   Part of the CUDA 5 Samples (distributed with CUDA Toolkit)
!   Simple example combining CUDA with MPI

!   Split and scatter an array of random numbers, do computation
on GPUs, reduce on host node

!   MPI and CUDA code separated into different source files,
simpleMPI.cpp and simpleMPI.cu

!   Works exactly like any other multi-file C++ build
!   Build the CUDA object file, build the C++ object, link them

together
	

Copyright © NVIDIA Corporation

$	 make	
nvcc	 -‐m64	 	 -‐gencode	 arch=compute_10,code=sm_10	 -‐gencode	
arch=compute_20,code=sm_20	 -‐gencode	 arch=compute_30,code=sm_30	 	
-‐o	 simpleMPI.o	 -‐c	 simpleMPI.cu	
	
mpicxx	 -‐m64	 	 -‐o	 main.o	 -‐c	 simpleMPI.cpp	
	
mpicxx	 -‐m64	 -‐o	 simpleMPI	 simpleMPI.o	 main.o	 -‐L$CUDA/lib64	 	 	 -‐
lcudart	

Copyright © NVIDIA Corporation

$	 make	
nvcc	 -‐m64	 	 -‐gencode	 arch=compute_10,code=sm_10	 -‐gencode	
arch=compute_20,code=sm_20	 -‐gencode	 arch=compute_30,code=sm_30	 	
-‐o	 simpleMPI.o	 -‐c	 simpleMPI.cu	
	
mpicxx	 -‐m64	 	 -‐o	 main.o	 -‐c	 simpleMPI.cpp	
	
mpicxx	 -‐m64	 -‐o	 simpleMPI	 simpleMPI.o	 main.o	 -‐L$CUDA/lib64	 	 	 -‐
lcudart	

(we’ll explain the –gencode bits later)

Copyright © NVIDIA Corporation

Example: OpenMPI

!   Popular MPI implementation

!   Includes CUDA support for sending/receiving CUDA device pointers
directly, without explicitly staging through host memory
!   Either does implicit cudaMemcpy calls, or does direct transfers if

GPUDirect support

!   Configure options:
--with-cuda=$CUDA_HOME
--with-cuda-libdir=/usr/lib64 (or wherever libcuda.so is)

Copyright © NVIDIA Corporation

Example: GROMACS

!   Popular molecular dynamics application with CUDA support
(mostly simulating biomolecules)

!   Version 4.5: CUDA support via OpenMM library, only single-GPU

support
!   Version 4.6: CUDA supported directly, multi-GPU support

!   Requires Compute Capability >= 2.0 (Fermi or Kepler)

Copyright © NVIDIA Corporation

Example: GROMACS

wget	 ftp://ftp.gromacs.org/pub/gromacs/gromacs-‐4.6.tar.gz	
tar	 xzf	 gromacs-‐4.6.tar.gz	 	
mkdir	 gromacs-‐build	
module	 load	 cmake	 cuda	 gcc/4.6.3	 fftw	 openmpi	
	
CC=mpicc	 CXX=mpiCC	 cmake	 ./gromacs-‐4.6	 -‐DGMX_OPENMP=ON	 	
-‐DGMX_GPU=ON	 -‐DGMX_MPI=ON	 -‐DGMX_PREFER_STATIC_LIBS=ON	 -‐
DCMAKE_BUILD_TYPE=Release	 -‐DCMAKE_INSTALL_PREFIX=./gromacs-‐build	
	
make	 install	
	

Copyright © NVIDIA Corporation

Example: GROMACS (cmake)

! cmake defines a number of environment variables for controlling
nvcc compiler

!   GROMACS default value for CUDA_NVCC_FLAGS:
-‐gencode;arch=compute_20,code=sm_20;-‐gencode;arch=compute_20,code=sm_21;-‐
gencode;arch=compute_30,code=sm_30;-‐
gencode;arch=compute_30,code=compute_30;-‐use_fast_math;	

Environment variables Meaning

CUDA_HOST_COMPILER Specify which host-code compiler to use (i.e. which gcc)

CUDA_HOST_COMPILER_OPTIONS Options passed to the host compiler

CUDA_NVCC_FLAGS Options passed to nvcc

Copyright © NVIDIA Corporation

NVCC Build Process

Copyright © NVIDIA Corporation

What actually gets built by nvcc?

!   NVCC generates three types of code:
!   Host object code (compiled with g++)
!   Device object code
!   Device assembly code (PTX)

!   Compiler produces a “fat binary” which includes all three types
of code

!   Breaking changes in both NVIDIA object code and in PTX assembly
can occur with each new GPU release

!   PTX is forward-compatible, object code is not

Copyright © NVIDIA Corporation

Fat binaries

!   When a CUDA “fat binary” is run on a given GPU, a few different
things can happen:
!   If the fat binary includes object code compiled for the device architecture,

that code is run directly.

!   If the fat binary includes PTX assembly which the GPU understands, that
code is Just-In-Time compiled and run on the GPU.
(results in slight startup lag)

!   If neither version are compatible with the GPU, the application doesn’t run.

!   Always uses the correct object code, or the newest compatible PTX

Copyright © NVIDIA Corporation

Why do we care?

!   A given CUDA binary is not guaranteed to run on an arbitrary GPU

!   And if it does run, not guaranteed to get best performance
!   JIT startup time
!   Your GPU may support newer PTX or object code features than are

compiled in

!   Mix of hardware you have in your cluster determines what options
to include in your fat binaries

Copyright © NVIDIA Corporation

NVCC Build Process (simplified)

nvcc Input Files

Host code

Device code

gcc

nvopencc ptxas

PTX
(device assembly)

fatbinary

PTX and/or CUBIN

gcc

Host object code

Combined
object code

Copyright © NVIDIA Corporation

NVCC Build Process (simplified)

nvcc Input Files

Host code

Device code

gcc

nvopencc ptxas

PTX
(device assembly)

fatbinary

PTX and/or CUBIN

gcc

Host object code

Combined
object code

! nvopencc generates PTX assembly
according to the compute capability

! ptxas generates device binaries according
to the device architecture

! fatbinary packages them together

Copyright © NVIDIA Corporation

Options to different stages

Environment variables Command-line
options

Meaning

-Xcompiler Pass options directly to the (host) compiler/preprocessor
(i.e. gcc)

-Xlinker Pass options directly to the linker

-Xcudafe Pass options directly to cudafe (pre-processor/splitter)

OPENCC_FLAGS -Xopencc Pass options directly to nvopencc, typically for steering
device code optimization

PTXAS_FLAGS -Xptxas Pass options directly to the ptx optimizing compiler

Copyright © NVIDIA Corporation

!   Compute Capability
!   Defines the computing features

supported by a given GPU
generation

!   Language features (i.e. double
precision floats, various
functions)

!   Device features (size of shared
memory, max thread block size,
etc)

!   PTX Assembly version
!   Newer GPUs can run older PTX

assembly code.

!   GPU Architecture
!   Binary code is architecture-

specific, and changes with each
GPU generation

!   Version of the object code.
!   Different architectures use

different optimizations, etc.

!   Binary code from one
architecture can’t run on
another

Compute capability and device architecture

Copyright © NVIDIA Corporation

Compute capability and device architecture

!   When you compile code with NVCC, you can specify
!   Compute capabilities, which describe version of CUDA language & PTX.

I.e., compute_20.
!   Device architectures, which describe version of CUDA object code.

I.e., sm_20.

!   You can generate multiple versions of both the PTX and the
object code to be included.

nvcc	 -‐m64	 	 -‐gencode	 arch=compute_10,code=sm_10	 -‐gencode	
arch=compute_20,code=sm_20	 -‐gencode	 arch=compute_30,code=sm_30	 	 	 	
-‐o	 simpleMPI.o	 -‐c	 simpleMPI.cu	

Copyright © NVIDIA Corporation

Command line options for specifying arch

Long option Short option Meaning

--gpu-architecture <arch> -arch Specify the GPU architecture to compile for. This specifies what
capabilities the code can use (features, etc).
Default value: compute_10

--gpu-code <gpu> -code Specify the GPU(s) to generate code for, i.e. what PTX
assembly and/or binary code to generate.
Default value: compute_10,sm_10

--generate-code -gencode Generalize -arch and -code into a single option with keywords
for convenience.
-gencode arch=… code=…

Copyright © NVIDIA Corporation

GROMACS revisited

!   Default flags in GROMACS: CUDA_NVCC_FLAGS=
-gencode;arch=compute_20,code=sm_20;-
gencode;arch=compute_20,code=sm_21;-
gencode;arch=compute_30,code=sm_30;-
gencode;arch=compute_30,code=compute_30;-use_fast_math;

!   Generates code for compute versions 2.0 (Tesla M2050/M2070), compute
version 2.1 (Quadro 600, various GeForce) and 3.0 (Tesla K10)

!   To generate optimized code for Tesla K20, you’d add compute capability 3.5:
-gencode arch=compute_35,code=sm_35

Copyright © NVIDIA Corporation

Common build strategies

!   “Lowest common denominator”
!   I can get away with Compute Capability 1.3, so that’s what I’ll use
!   -‐gencode	 arch=compute_13	 code=compute_13,sm_13	
!   Newer GPUs must JIT from PTX code

!   “Everything under the sun!”

!   Compile for everything released when I wrote the Makefile
!   -‐gencode	 arch=compute_10,code=sm_10	 –gencode	 arch=compute_13,code=sm_13	 	

–gencode	 arch=compute_20,code=sm_20	 –gencode	 arch=compute_30,code=sm_30	 	
–gencode	 arch=compute_35,code=sm_35

!   “Newest features only”
!   Target the GPU I just bought, ignore earlier ones
!   -‐gencode	 arch=compute_30	 code=compute_30,sm_30	

Copyright © NVIDIA Corporation

Host compiler compatibility

!   Host compiler in NVCC is g++ (uses first one in PATH)

!   If you want to use a different compiler with CUDA (Intel, PGI,
etc), need to be able to link against GCC ABI

!   Best practice:
!   Minimize performance-critical host code in files processed by nvcc
!   Link with objects produced by your compiler of choice

!   Common pattern: build shared library containing all CUDA code,
link to it from your larger application

Copyright © NVIDIA Corporation

Libraries and Other Compilers

Copyright © NVIDIA Corporation

GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ Templated
Parallel Algorithms Sparse Linear Algebra IMSL Library

GPU Accelerated
Linear Algebra

Building-block
Algorithms

Copyright © NVIDIA Corporation

GPU Accelerated Libraries
“Drop-in” Acceleration for your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ Templated
Parallel Algorithms Sparse Linear Algebra IMSL Library

GPU Accelerated
Linear Algebra

Building-block
Algorithms

Included in CUDA Toolkit

Copyright © NVIDIA Corporation

OpenACC Directives

Program myscience
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myscience

CPU GPU

Your original
Fortran or C code

Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs &
multicore CPUs

OpenACC
Compiler

Hint

Copyright © NVIDIA Corporation

OpenACC

!   Useful way to quickly add CUDA support to a program without writing CUDA code
directly, especially for legacy apps

!   Uses compiler directives very similar to OpenMP
!   Supports C and Fortran
!   Generally doesn’t produce code as fast as a good CUDA programmer… but often get

decent speedups
!   Cross-platform; depending on compiler, supports NVIDIA, AMD, Intel accelerators

!   Compiler support:
!   Cray 8.0+
!   PGI 12.6+
!   CAPS HMPP 3.2.1+

! http://developer.nvidia.com/openacc

Copyright © NVIDIA Corporation

OpenACC

$	 pgcc	 -‐acc	 -‐Minfo=accel	 -‐ta=nvidia	 -‐o	 saxpy_acc	 saxpy.c	 	
PGC-‐W-‐0095-‐Type	 cast	 required	 for	 this	 conversion	 (saxpy.c:	 13)	
PGC-‐W-‐0155-‐Pointer	 value	 created	 from	 a	 nonlong	 integral	 type	 	 (saxpy.c:	 13)	
saxpy:	
	 	 	 	 	 	 4,	 Generating	 present_or_copyin(x[0:n])	
	 	 	 	 	 	 	 	 	 Generating	 present_or_copy(y[0:n])	
	 	 	 	 	 	 	 	 	 Generating	 NVIDIA	 code	
	 	 	 	 	 	 	 	 	 Generating	 compute	 capability	 1.0	 binary	
	 	 	 	 	 	 	 	 	 Generating	 compute	 capability	 2.0	 binary	
	 	 	 	 	 	 	 	 	 Generating	 compute	 capability	 3.0	 binary	
	 	 	 	 	 	 5,	 Loop	 is	 parallelizable	
	 	 	 	 	 	 	 	 	 Accelerator	 kernel	 generated	
	 	 	 	 	 	 	 	 	 	 5,	 #pragma	 acc	 loop	 gang,	 vector(128)	 /*	 blockIdx.x	 threadIdx.x	 */	
PGC/x86-‐64	 Linux	 13.2-‐0:	 compilation	 completed	 with	 warnings	

Copyright © NVIDIA Corporation

OpenACC

!  PGI compiler generates…
!  Object code for currently-installed GPU, if supported

(auto-detect)
!  PTX assembly for all major versions (1.0, 2.0, 3.0)

!  Depending on the compiler step, there may or may not
be a OpenACC->CUDA C translation step before compile
(but this intermediate code is usually not accessible)

Copyright © NVIDIA Corporation

CUDA Fortran

!   Slightly-modified Fortran language which uses the CUDA Runtime
API

!   Almost 1:1 translation of CUDA C concepts to Fortran 90
!   Changes mostly to conform to Fortran idioms (“Fortranic”?)

!   Currently supported only by PGI Fortran compiler
! pgfortran acts like “nvcc for Fortran” with either the –Mcuda

option, or if you use the file extension .cuf
!   Compiles to CUDA C as intermediate. Can keep C code with option

“-Mcuda=keepgpu”

Copyright © NVIDIA Corporation

Other GPU Programming Languages

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

PyCUDA, Copperhead, Numba Pro Python

GPU.NET C#

MATLAB, Mathematica, LabVIEW Numerical analytics

Copyright © NVIDIA Corporation

Other GPU Programming Languages

!   Current version of NVCC uses LLVM
internally

!   Code to compile LLVM IR to PTX
assembly is open source (BSD
license), so adding additional
language support is easier

!   More information: Compiler SDK
https://developer.nvidia.com/cuda-
llvm-compiler

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA
GPUs

x86
CPUs

New Language
Support

New Processor
Support

Copyright © NVIDIA Corporation

Other Resources
!   CUDA Toolkit Documentation: http://docs.nvidia.com

! OpenACC: http://www.openacc.org/

!   CUDA Fortran @ PGI: http://www.pgroup.com/resources/cudafortran.htm

!   GPU Applications Catalog (list of known common apps with GPU support):

http://www.nvidia.com/docs/IO/123576/nv-applications-catalog-lowres.pdf

!   Email me! Adam DeConinck, adeconinck@nvidia.com

…and many other resources available via CUDA Registered Developer program.
https://developer.nvidia.com/nvidia-registered-developer-program

Copyright © NVIDIA Corporation

Questions?

Copyright © NVIDIA Corporation

ISV Applications

!   …or maybe you don’t have to build the application at all!
If using an ISV application, distributed as a binary.

!   Important to be careful about libraries for pre-compiled packages,
especially CUDA Runtime:
!   Many applications distribute a particular libcudart.so
!   Dependent on that particular version, may break with later versions
!   Apps don’t always link to it intelligently; be careful with your modules!

Copyright © NVIDIA Corporation

Driver API vs Runtime API

!   CUDA GPUs expose two APIs: “driver API” and “runtime API”

!   Driver API is much more complex, but provides more control over low-level
details. Link directly to the driver’s libcuda.so.

!   Driver API applications are not necessarily forward compatible

!   Runtime API is much simpler, and is the “CUDA language” most people think of.
!   Compiled with NVCC, programs link runtime library (libcudart.so)

!   Vastly more programs use runtime API, so we’ll focus on that

